LeNet

This example shows classification of MNIST dataset with the convolutional neural network know as LeNet5. It also combines various packages from the Julia ecosystem with Flux.

Load the necessary packages.

using Flux
using Flux.Data: DataLoader
using Flux.Optimise: Optimiser, WeightDecay
using Flux: onehotbatch, onecold, logitcrossentropy
using Statistics, Random
using Parameters: @with_kw
using Logging: with_logger, global_logger
using TensorBoardLogger: TBLogger, tb_overwrite, set_step!, set_step_increment!
import ProgressMeter
import MLDatasets
import DrWatson: savename, struct2dict
import BSON
using CUDAapi


This is LeNet5 “constructor”. The model can be adapted to any image size and number of output classes.

function LeNet5(; imgsize=(28,28,1), nclasses=10) 
    out_conv_size = (imgsize[1]÷4 - 3, imgsize[2]÷4 - 3, 16)
    
    return Chain(
            x -> reshape(x, imgsize..., :),
            Conv((5, 5), imgsize[end]=>6, relu),
            MaxPool((2, 2)),
            Conv((5, 5), 6=>16, relu),
            MaxPool((2, 2)),
            x -> reshape(x, :, size(x, 4)),
            Dense(prod(out_conv_size), 120, relu), 
            Dense(120, 84, relu), 
            Dense(84, nclasses)
          )
end


Load the MNIST dataset from MLDatasets.

function get_data(args)
    xtrain, ytrain = MLDatasets.MNIST.traindata(Float32, dir=args.datapath)
    xtest, ytest = MLDatasets.MNIST.testdata(Float32, dir=args.datapath)

    xtrain = reshape(xtrain, 28, 28, 1, :)
    xtest = reshape(xtest, 28, 28, 1, :)

    ytrain, ytest = onehotbatch(ytrain, 0:9), onehotbatch(ytest, 0:9)

    train_loader = DataLoader(xtrain, ytrain, batchsize=args.batchsize, shuffle=true)
    test_loader = DataLoader(xtest, ytest,  batchsize=args.batchsize)
    
    return train_loader, test_loader
end


Create a loss function.

loss(, y) = logitcrossentropy(, y)


function eval_loss_accuracy(loader, model, device)
    l = 0f0
    acc = 0
    ntot = 0
    for (x, y) in loader
        x, y = x |> device, y |> device
         = model(x)
        l += loss(, y) * size(x)[end]        
        acc += sum(onecold( |> cpu) .== onecold(y |> cpu))
        ntot += size(x)[end]
    end
    return (loss = l/ntot |> round4, acc = acc/ntot*100 |> round4)
end


Define utility functions.

num_params(model) = sum(length, Flux.params(model)) 

round4(x) = round(x, digits=4)


Define arguments for the train function.

@with_kw mutable struct Args
    η = 3e-4             # learning rate
    λ = 0                # L2 regularizer param, implemented as weight decay
    batchsize = 128      # batch size
    epochs = 20          # number of epochs
    seed = 0             # set seed > 0 for reproducibility
    cuda = true          # if true use cuda (if available)
    infotime = 1 	     # report every `infotime` epochs
    checktime = 5        # Save the model every `checktime` epochs. Set to 0 for no checkpoints.
    tblogger = false      # log training with tensorboard
    savepath = nothing    # results path. If nothing, construct a default path from Args. If existing, may overwrite
    datapath = joinpath(homedir(), "Datasets", "MNIST") # data path: change to your data directory 
end


Define the train function.

function train(; kws...)
    args = Args(; kws...)
    args.seed > 0 && Random.seed!(args.seed)
    use_cuda = args.cuda && CUDAapi.has_cuda_gpu()
    if use_cuda
        device = gpu
        @info "Training on GPU"
    else
        device = cpu
        @info "Training on CPU"
    end

    ## DATA
    train_loader, test_loader = get_data(args)
    @info "Dataset MNIST: $(train_loader.nobs) train and $(test_loader.nobs) test examples"

    ## MODEL AND OPTIMIZER
    model = LeNet5() |> device
    @info "LeNet5 model: $(num_params(model)) trainable params"    
    
    ps = Flux.params(model)  

    opt = ADAM(args.η) 
    if args.λ > 0 
        opt = Optimiser(opt, WeightDecay(args.λ))
    end
    
    ## LOGGING UTILITIES
    if args.savepath == nothing
        experiment_folder = savename("lenet", args, scientific=4,
                    accesses=[:batchsize, :η, :seed, :λ]) # construct path from these fields
        args.savepath = joinpath("runs", experiment_folder)
    end
    if args.tblogger 
        tblogger = TBLogger(args.savepath, tb_overwrite)
        set_step_increment!(tblogger, 0) # 0 auto increment since we manually set_step!
        @info "TensorBoard logging at \"$(args.savepath)\""
    end
    
    function report(epoch)
        train = eval_loss_accuracy(train_loader, model, device)
        test = eval_loss_accuracy(test_loader, model, device)        
        println("Epoch: $epoch   Train: $(train)   Test: $(test)")
        if args.tblogger
            set_step!(tblogger, epoch)
            with_logger(tblogger) do
                @info "train" loss=train.loss  acc=train.acc
                @info "test"  loss=test.loss   acc=test.acc
            end
        end
    end
    
    ## TRAINING
    @info "Start Training"
    report(0)
    for epoch in 1:args.epochs
        p = ProgressMeter.Progress(length(train_loader))

        for (x, y) in train_loader
            x, y = x |> device, y |> device
            gs = Flux.gradient(ps) do
                 = model(x)
                loss(, y)
            end
            Flux.Optimise.update!(opt, ps, gs)
            ProgressMeter.next!(p)   # comment out for no progress bar
        end
        
        epoch % args.infotime == 0 && report(epoch)
        if args.checktime > 0 && epoch % args.checktime == 0
            !ispath(args.savepath) && mkpath(args.savepath)
            modelpath = joinpath(args.savepath, "model.bson") 
            let model=cpu(model), args=struct2dict(args)
                BSON.@save modelpath model epoch args
            end
            @info "Model saved in \"$(modelpath)\""
        end
    end
end


We execut it as a script.

if abspath(PROGRAM_FILE) == @__FILE__ 
    train()
end


Output:

┌ Info: Training on CPU
└ @ Main In[9]:10
┌ Info: Dataset MNIST: 60000 train and 10000 test examples
└ @ Main In[9]:15
┌ Info: LeNet5 model: 44426 trainable params
└ @ Main In[9]:19
┌ Info: Start Training
└ @ Main In[9]:54
Epoch: 0   Train: (loss = 2.2978f0, acc = 12.8117)   Test: (loss = 2.2961f0, acc = 13.16)
Progress: 100%|█████████████████████████████████████████| Time: 0:01:38
Epoch: 1   Train: (loss = 0.2015f0, acc = 94.105)   Test: (loss = 0.186f0, acc = 94.41)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:56
Epoch: 2   Train: (loss = 0.1229f0, acc = 96.3267)   Test: (loss = 0.1098f0, acc = 96.61)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:55
Epoch: 3   Train: (loss = 0.1003f0, acc = 96.9467)   Test: (loss = 0.0877f0, acc = 97.32)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:57
Epoch: 4   Train: (loss = 0.0769f0, acc = 97.73)   Test: (loss = 0.068f0, acc = 97.91)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:57
Epoch: 5   Train: (loss = 0.0715f0, acc = 97.775)   Test: (loss = 0.0648f0, acc = 97.92)
┌ Info: Model saved in "runs/lenet_batchsize=128_seed=0_η=0.0003_λ=0/model.bson"
└ @ Main In[9]:76
Progress: 100%|█████████████████████████████████████████| Time: 0:00:58
Epoch: 6   Train: (loss = 0.062f0, acc = 98.085)   Test: (loss = 0.055f0, acc = 98.29)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:54
Epoch: 7   Train: (loss = 0.0569f0, acc = 98.2917)   Test: (loss = 0.0535f0, acc = 98.26)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:55
Epoch: 8   Train: (loss = 0.0529f0, acc = 98.3267)   Test: (loss = 0.0551f0, acc = 98.39)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:55
Epoch: 9   Train: (loss = 0.0447f0, acc = 98.5967)   Test: (loss = 0.044f0, acc = 98.59)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:56
Epoch: 10   Train: (loss = 0.0405f0, acc = 98.7367)   Test: (loss = 0.0407f0, acc = 98.67)
┌ Info: Model saved in "runs/lenet_batchsize=128_seed=0_η=0.0003_λ=0/model.bson"
└ @ Main In[9]:76
Progress: 100%|█████████████████████████████████████████| Time: 0:00:55
Epoch: 11   Train: (loss = 0.0349f0, acc = 98.9117)   Test: (loss = 0.0386f0, acc = 98.75)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:55
Epoch: 12   Train: (loss = 0.0335f0, acc = 98.9783)   Test: (loss = 0.0397f0, acc = 98.7)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:53
Epoch: 13   Train: (loss = 0.0323f0, acc = 98.965)   Test: (loss = 0.0379f0, acc = 98.66)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:53
Epoch: 14   Train: (loss = 0.0299f0, acc = 99.0583)   Test: (loss = 0.0388f0, acc = 98.74)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:56
Epoch: 15   Train: (loss = 0.0312f0, acc = 98.9717)   Test: (loss = 0.036f0, acc = 98.73)
┌ Info: Model saved in "runs/lenet_batchsize=128_seed=0_η=0.0003_λ=0/model.bson"
└ @ Main In[9]:76
Progress: 100%|█████████████████████████████████████████| Time: 0:00:57
Epoch: 16   Train: (loss = 0.0244f0, acc = 99.275)   Test: (loss = 0.0352f0, acc = 98.89)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:56
Epoch: 17   Train: (loss = 0.0221f0, acc = 99.3183)   Test: (loss = 0.0346f0, acc = 98.86)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:57
Epoch: 18   Train: (loss = 0.0211f0, acc = 99.345)   Test: (loss = 0.0343f0, acc = 98.85)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:58
Epoch: 19   Train: (loss = 0.019f0, acc = 99.4433)   Test: (loss = 0.0344f0, acc = 98.8)
Progress: 100%|█████████████████████████████████████████| Time: 0:00:58
Epoch: 20   Train: (loss = 0.0185f0, acc = 99.4133)   Test: (loss = 0.0354f0, acc = 98.83)
┌ Info: Model saved in "runs/lenet_batchsize=128_seed=0_η=0.0003_λ=0/model.bson"
└ @ Main In[9]:76

– Carlo Lucibello, matsueushi